Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.29.542735

ABSTRACT

Dysregulated immune responses contribute to pathogenesis of COVID-19 leading to uncontrolled and exaggerated inflammation observed during severe COVID-19. However, it remains unclear how immunity to SARS-CoV-2 is induced and subsequently controlled. Notably, here we have uncovered an important role for complement in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonized SARS-CoV-2 via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently interacted with dendritic cells (DCs), inducing type I IFN and pro-inflammatory cytokine responses, which were inhibited by antibodies against the complement receptors (CR)3 and CR4. These data suggest that complement is important in inducing immunity via DCs in the acute phase against SARS-CoV-2. Strikingly, serum from COVID-19 patients as well as monoclonal antibodies against SARS-CoV-2 attenuated innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking the FcyRII, CD32, restored complement-induced immunity. These data strongly suggest that complement opsonization of SARS-CoV-2 is important for inducing innate and adaptive immunity to SARS-CoV-2. Subsequent induction of antibody responses is important to limit the immune responses and restore immune homeostasis. These data suggest that dysregulation in complement and FcyRII signalling might underlie mechanisms causing severe COVID-19.


Subject(s)
Chronobiology Disorders , COVID-19 , Inflammation
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.05.22270494

ABSTRACT

Summary Seasonal influenza viruses typically cause annual epidemics worldwide infecting 5-15% of the human population 1 . However, during the first two years of the COVID-19 pandemic, seasonal influenza virus circulation was unprecedentedly low with very few reported infections 2 . The lack of immune stimulation to influenza viruses during this time, combined with waning antibody titres to previous influenza virus infections, could lead to increased susceptibility to influenza in the coming seasons and to larger and more severe epidemics when infection prevention measures against COVID-19 are relaxed 3,4 . Here, based on serum samples from 165 adults collected longitudinally before and during the pandemic, we show that the waning of antibody titres against seasonal influenza viruses during the first two years of the pandemic is likely to be negligible. Using historical influenza virus epidemiological data from 2003-2019, we also show that low country-level prevalence of each influenza subtype over one or more years has only small impacts on subsequent epidemic size. These results suggest that the risks posed by seasonal influenza viruses remained largely unchanged during the first two years of the COVID-19 pandemic and that the sizes of future seasonal influenza virus epidemics will likely be similar to those observed before the pandemic.


Subject(s)
COVID-19 , Influenza, Human
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.27.21264163

ABSTRACT

BackgroundEmerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants. MethodsIn a prospective cohort of 165 SARS-CoV-2 naive health care workers, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. FindingsFour weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of BNT162b2 and mRNA-1273 (geometric mean titers (GMT) of 197 [95% CI 149-260] and 313 [95% CI 218-448], respectively), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (GMT of 26 [95% CI 18-37] and 14 [95% CI 8-25] IU/ml, respectively). These findings were robust for adjustment to age and sex. VOCs neutralization was reduced in all vaccine groups, with the largest (9- to 80-fold) reduction in neutralization observed against the Omicron variant. The booster BNT162b2 vaccination increased neutralizing antibody titers for all groups with substantial improvement against the VOCs including the Omicron variant. Study limitations include the lack of cellular immunity data. ConclusionsOverall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination.

4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-235272.v1

ABSTRACT

One year into the Coronavirus Disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), effective treatments are still needed1–3. Monoclonal antibodies, given alone or as part of a therapeutic cocktail, have shown promising results in patients, raising the hope that they could play an important role in preventing clinical deterioration in severely ill or in exposed, high risk individuals4–6. Here, we evaluated the prophylactic and therapeutic effect of COVA1-18 in vivo, a neutralizing antibody isolated from a convalescent patient7 and highly potent against the B.1.1.7. isolate8,9. In both prophylactic and therapeutic settings, SARS-CoV-2 remained undetectable in the lungs of COVA1-18 treated hACE2 mice. Therapeutic treatment also caused a dramatic reduction in viral loads in the lungs of Syrian hamsters. When administered at 10 mg kg− 1 one day prior to a high dose SARS-CoV-2 challenge in cynomolgus macaques, COVA1-18 had a very strong antiviral activity in the upper respiratory compartments with an estimated reduction in viral infectivity of more than 95%, and prevented lymphopenia and extensive lung lesions. Modelling and experimental findings demonstrate that COVA1-18 has a strong antiviral activity in three different preclinical models and could be a valuable candidate for further clinical evaluation.


Subject(s)
Lung Diseases , Severe Acute Respiratory Syndrome , COVID-19 , Lymphopenia
5.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3732360

ABSTRACT

The SARS-CoV-2 pandemic is continuing to disrupt personal lives, global healthcare systems and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits and cynomolgus macaques. The vaccine-induced immunity protected macaques against a high dose challenge, resulting in strongly reduced viral infection and replication in upper and lower airways. These nanoparticles are a promising vaccine candidate to curtail the SARS-CoV-2 pandemic.Funding: This work was supported by a Netherlands Organization for Scientific Research (NWO) Vici grant (to R.W.S.); by the Bill & Melinda Gates Foundation through the Collaboration for AIDS Vaccine Discovery (CAVD) grants OPP1111923, OPP1132237, and INV-002022 (to R.W.S. and/or N.P.K.), INV-008352/OPP1153692 and OPP1196345/INV-008813 (to M.C.), and grant OPP1170236 (to A.B.W.); by the Fondation Dormeur, Vaduz (to R.W.S. and to M.J.v.G.) and Health Holland PPS-allowance LSHM20040 (to M.J.v.G.); the University of Southampton Coronavirus Response Fund (to M.C.); and by the Netherlands Organisation for Health Research and Development ZONMW (to B.L.H). M.J.v.G. is a recipient of an AMC Fellowship from Amsterdam UMC and a COVID-19 grant from the Amsterdam Institute for Infection and Immunity. R.W.S and M.J.v.G. are recipients of support from the University of Amsterdam Proof of Concept fund (contract no. 200421) as managed by Innovation Exchange Amsterdam (IXA). The Infectious Disease Models and Innovative Therapies (IDMIT) research infrastructure is supported by the ‘Programme Investissements d’Avenir, managed by the ANR under reference ANR-11-INBS-0008. The Fondation Bettencourt Schueller and the Region Ile-de-France contributed to the implementation of IDMIT’s facilities and imaging technologies. The NHP study received financial support from REACTing, the National Research Agency (ANR; AM-CoV-Path) and the European Infrastructure TRANSVAC2 (730964). Conflict of Interest: N.P.K. is a co-founder, shareholder, and chair of the scientific advisory board of Icosavax, Inc. All other authors declare no competing interests.Ethical Approval: The protocols were approved by the institutional ethical committee “Comité d’Ethique en Expérimentation Animale du Commissariat à l’Energie Atomique et aux Energies Alternatives” (CEtEA #44) under statement number A20-011. The study was authorized by the “Research, Innovation and Education Ministry” under registration number APAFIS#24434-2020030216532863v1.


Subject(s)
Acquired Immunodeficiency Syndrome , Communicable Diseases , Protein-Energy Malnutrition , Disease Models, Animal , COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.13.190140

ABSTRACT

For yet unknown reasons, severely ill COVID-19 patients often become critically ill around the time of activation of adaptive immunity. Here, we show that anti-Spike IgG from serum of severely ill COVID-19 patients induces a hyper-inflammatory response by human macrophages, which subsequently breaks pulmonary endothelial barrier integrity and induces microvascular thrombosis. The excessive inflammatory capacity of this anti-Spike IgG is related to glycosylation changes in the IgG Fc tail. Moreover, the hyper-inflammatory response induced by anti-Spike IgG can be specifically counteracted in vitro by use of the active component of fostamatinib, an FDA- and EMA-approved therapeutic small molecule inhibitor of Syk. One sentence summaryAnti-Spike IgG promotes hyper-inflammation.


Subject(s)
COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.12.088716

ABSTRACT

The rapid spread of SARS-CoV-2 has a significant impact on global health, travel and economy. Therefore, preventative and therapeutic measures are urgently needed. Here, we isolated neutralizing antibodies from convalescent COVID-19 patients using a SARS-CoV-2 stabilized prefusion spike protein. Several of these antibodies were able to potently inhibit live SARS-CoV-2 infection at concentrations as low as 0.007 {micro}g/mL, making them the most potent human SARS-CoV-2 antibodies described to date. Mapping studies revealed that the SARS-CoV-2 spike protein contained multiple distinct antigenic sites, including several receptor-binding domain (RBD) epitopes as well as previously undefined non-RBD epitopes. In addition to providing guidance for vaccine design, these mAbs are promising candidates for treatment and prevention of COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL